Ετικέτες

Δευτέρα 23 Μαρτίου 2020

Emmy Noether: Η πιο σημαντική γυναίκα των Μαθηματικών


Γεννήθηκε 23 Μαρτίου 1882 στην πόλη Erlangen της Γερμανίας. 

Αναφέρεται από τους Πάβελ Αλεξανδρώφ, Άλμπερτ Αϊνστάιν, Jean Dieudonné, Hermann Weyl, Νόρμπερτ Βίνερ και άλλους ως η πιο σημαντική γυναίκα στην ιστορία των μαθηματικών που επέφερε ριζικές αλλαγές στις θεωρίες των δακτυλίων, των σωμάτων, και των αλγεβρικών δομών. Στη φυσική, το θεώρημα της Νέτερ εξηγεί τη θεμελιώδη σχέση μεταξύ συμμετρίας και των νόμων διατήρησης.

Ξεχώριζε από μικρή για την εξυπνάδα και τη φιλικότητά της. Σε ένα παιδικό πάρτι είχε λύσει μια σπαζοκεφαλιά απίστευτα γρήγορα, δείχνοντας το λογικό της δαιμόνιο από νωρίς! Αρχικά σχεδίαζε να σπουδάσει Αγγλικά και Γαλλικά, αλλά τελικά σπούδασε Μαθηματικά στο πανεπιστήμιο της πόλης της, όπου δίδασκε ο πατέρας της. Αυτή ήταν μία αντισυμβατική απόφαση, διότι δύο χρόνια νωρίτερα η Ακαδημαϊκή Σύγκλητος του πανεπιστημίου είχε δηλώσει, ότι το να επιτραπεί η εκπαίδευση και στα δύο φύλα θα "ανέτρεπε όλη την ακαδημαϊκή τάξη". Η Νέτερ ως μία από τις δύο μόλις γυναίκες οι οποίες φοιτούσαν σε ένα πανεπιστήμιο των 986 ατόμων, επιτρεπόταν να παρακολουθεί μόνο τα μαθήματα και όχι να συμμετέχει όπως και οι υπόλοιποι φοιτητές και επιπλέον έπρεπε να ζητήσει την άδεια του κάθε καθηγητή χωριστά στου οποίου τις διαλέξεις επιθυμούσε να παρευρίσκεται. Παρόλα τα εμπόδια, στις 14 Ιουνίου του 1903 κατάφερε να περάσει τις εξετάσεις αποφοίτησης του Realgymnasium στη Νυρεμβέργη. 
Δίδαξε στο πανεπιστήμιο του Göttingen, όπου οι μαθητές της ονομάστηκαν "τα αγόρια της Νέτερ". Την άνοιξη του 1915, η Νέτερ κλήθηκε να επιστρέψει στο Πανεπιστήμιο του Göttingen από τον David Hilbert και Felix Klein. Η προσπάθειά τους να την προσλάβουν, όμως, είχε αποκλειστεί από τους φιλολόγους και ιστορικούς της φιλοσοφικής σχολής: οι γυναίκες, επέμεναν, δεν θα έπρεπε να γίνουν Privatdozent. Ένα μέλος της σχολής διαμαρτυρήθηκε: «Τι θα σκεφτούν οι στρατιώτες μας όταν επιστρέψουν στο πανεπιστήμιο και να δουν ότι είναι υποχρεωμένοι να μάθουν υπό την διδασκαλία μιας γυναίκας;». Ο Hilbert απάντησε με αγανάκτηση, δηλώνοντας, «δεν βλέπω ότι το φύλο του υποψηφίου αποτελεί επιχείρημα κατά της εισδοχής της ως «Privatdozent». Εξάλλου, είμαστε ένα πανεπιστήμιο, όχι ένα μπάνιο».
Κατά τα πρώτα χρόνια της διδασκαλίας της στο Göttingen δεν είχε επίσημη θέση και δεν πληρωνόταν. Η οικογένειά της πλήρωνε για τη διαμονή της εκεί και υποστήριζε το ακαδημαϊκό έργο της. Οι διαλέξεις της συχνά διαφημιζόνταν υπό το όνομα του Hilbert, και η Νέτερ θα παρείχε "βοήθεια".
Λίγο μετά την άφιξή της στο Γκέτινγκεν, ωστόσο, επέδειξε τις δυνατότητές της αποδεικνύοντας ένα θεώρημα που είναι τώρα γνωστό ως θεώρημα Νέτερ, το οποίο δείχνει ότι ένας νόμος διατήρησης συνδέεται με οποιαδήποτε διαφορίσιμη συμμετρία ενός φυσικού συστήματος. Οι Αμερικανοί φυσικοί Leon M. Lederman και Christopher T. Hill υποστηρίζουν στο βιβλίο τους «Συμμετρία και το όμορφο Σύμπαν» ότι το θεώρημα της Νέτερ είναι «σίγουρα ένα από τα πιο σημαντικά μαθηματικά θεωρήματα που αποδείχθηκαν ποτέ στην καθοδήγηση της ανάπτυξης της σύγχρονης φυσικής, ενδεχομένως στο ίδιο επίπεδο με το Πυθαγόρειο θεώρημα».
Η Νέτερ έδειχνε αφοσίωση στο αντικείμενό της και τους μαθητές της πέραν της ακαδημαϊκής ημέρας. Κάποτε, όταν το κτίριο έκλεισε για μια αργία, συγκέντρωσε την τάξη έξω στα σκαλιά, τους οδήγησε μέσα στο δάσος, και δίδαξε σε ένα τοπικό καφέ. Αργότερα, αφού είχε απορριφθεί από το Τρίτο Ράιχ, προσκάλεσε τους μαθητές στο σπίτι της για να συζητήσουν τα μελλοντικά τους σχέδια και μαθηματικές έννοιες.
Σε επιστολή του προς τους New York Times, ο Άλμπερτ Αϊνστάιν έγραψε:
«Αν θέλουμε να κρίνουμε τους πιο ικανούς μαθηματικούς εν ζωή, η Fräulein Νέτερ ήταν η πιο σημαντική δημιουργική μαθηματική ιδιοφυΐα που έχει εμφανιστεί μέχρι στιγμής από την στιγμή που ξεκίνησε η τριτοβάθμια εκπαίδευση των γυναικών . Στον τομέα της άλγεβρας, στην οποία οι πιο ταλαντούχοι μαθηματικοί έχουν απασχολούνται για αιώνες, ανακάλυψε μεθόδους που έχουν αποδειχθεί τεράστιας σημασίας για την ανάπτυξη της σημερινής νεότερης γενιάς των μαθηματικών.» (Βικιπαίδεια)






Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου